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                                                               INTRODUCTION

What is a Latin quare?

We make a brief reminder about the mathematical objects called Latin squares.

Let E be a set of n elements .  A Latin square defined on E is a table with n columns and n rows  in 
which each element belonging to E appears only one time in each column and one time in each row. 
For example if  E = {1 , 2 , 3 , 4} , for which n = 4 , a Latin square defined on E can be : 

                                                            4   3    1   2
                                                            2   1    4   3
                                                            3   4    2   1
                                                   1   2    3    4       

Each column and each row of the Latin square is therefore a permutation of the elements of E. The 
integer n is called the order (in the sense of  the « size » ) of the Latin square. Here this Latin square 
is order 4.  

The purpose of our work is to show how to construct a Latin square for any set E of cardinal n using 
a single-cycle bijection. In particular we will show that this method enables to easily construct Latin 
squares defined on sets of type {0,1}ⁿ . For example if E =  {0,1}³, which is the set of bit triplets, 
one can check that the array below is a Latin square whose elements are the bit triplets. 

101    011   110   000   111   100   001   010  
011   010   111   001    100   000   101   110  
010   110   100   101    000   001   011   111  
110   111   000   011    001   101   010   100  
111   100   001   010   101    011   110   000 
100   000   101   110   011    010   111   001 
000   001   011   111    010   110   100   101  
001   101   010  100    110    111   000   011  

The set {0,1}³ = { 000 ,010 , 111 , 110 , 001 , 101 , 100 , 011 } is the set of eight triplets of bits.  
This array is a Latin square, each triplet of bits belonging to {0,1}³ appears only once in each row 
and in each column.

The description of the mathematical tools and methods that enable the construction of Latin squares 
from a single-cycle bijection, as well as the study of this last notion, will be seen in part I.

Secondly,  and this  is  the essential  object of our study,  we will  show how to use in  symmetric 
cryptography these  objects  that  are  the  Latin  squares  and the  single-cycle  bijections  to  design 
disposable  key generators  (Part  II  and III).  We will  also  see  how to  use  these  disposable  key 
generators  for  authentication  protocols  (Part  IV).  The  domain  of  use  of  these  cryptographic 
techniques  can  be,  according  to  us,  the  military  or  diplomatic  domain.  We  will  also  see  in  a 
supplement  that  they  can  be  used  in  block  cipher  modes.
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PART I – Reminders : cyclic subgroups of symmetric groups, cycle of a bijection , single-cycle  
bijection.

The results stated in this part are established and  therefore  no proof of them will be given,  with 
some exceptions. 

§ 1 – Symmetric Group of a set  E

Let E be any finite set of elements. Let o  be the operation of function composition . In mathematics, 
the set of all bijections (one-to-one mappings) from E to E  is called the symmetric group of E .  It 
is an algebraic group structure that we denote ( Se , o) .  The symmetric group of E ,  denoted  Se  , 
is also the set of all permutations of the elements of E if E is an ordered set . For example ,  if E = 
{1,2,3} with the natural order of integers  one permutation p of the elements of E can be  (3 1 2) , 
which will then be defined by the following bijection :   

1 → 3
2 → 1
3 → 2

or, using the bijection symbol p (we use symbol p as it refers to the first letter of ‘’permutation’’):

p(1) = 3 
p(2) = 1   
p(3) = 2

If the order relation over E is  2 < 3 < 1 , and no longer   1 < 2 < 3  , then the bijection from E to 
E defining the permutation ( 3 1 2) would be :

p(2) = 3 
p(3) = 1   
p(1) = 2.

§ 2 – Cycle of a permutation of E 

Let p be a permutation (bijection) belonging to the symmetric group Se of a set E . We call cycle of 
p  , for one element i from E  , the sequence (i ,  e1 ,  e2  , ….., pʰ⁻¹(i) ) ,  such that :

p¹( i) = e1  ,  p²(i) = e2 , ….., pʰ( i) =  i  , in which :

-  pⁿ  is the bijection  p o p o....o  p , where the operation o  ( function composition ) being iterated n-1 
times,
-  h is the smallest integer number such as  pʰ (i) =  i ,

Example

Let  p be the permutation of the set { 1,2,3,4,5,6,7,8,9} defined and written as follows (the order 
relation on this set  is the natural order of integers )  : 
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           1    2   3    4     5   6     7    8   9       
p  =  ( 7  6  9  1  4  3  5  2  8 )

(when the permutation is given in this way with the rank numbers written above its elements it is 
generally said that it is given in matrix form) .

Now,  the  permutation  of  the  elements  of  {  1,2,3,4,5,6,7,8,9}  written  above  in  matrix  form  , 
obviously denoted also p, can also be written as a bijection , defined by :

p(1) = 7  
p(2) = 6  
p(3) = 9  
p(4) = 1  
p(5) = 4   
p(6) = 3  
p(7) = 5    
p(8) = 2   
p(9) = 8 

That means :  “7 is  first  element of the permutation (i.e.  of the sequence) ” ,  “6 is  the second 
element” , 9 is the third element” , etc .

So, we can obtain a cycle of p by noting that : 

p(1)   = 7 , 
p²(1) = 5 , 
p³(1) = 4 , 
p⁴(1) = 1 

since  : 

p(1) = 7 , 
p²(1) =   p o p  =         p(p(1)) = p(7) = 5  ,  
p³(1) =  p o  p o  p =    p(p²(1)) = p(5) = 4  ,  
p⁴(1) =  p o  p  o  p  =  p(p³(1)) = p(4) = 1.

Then , if we choose 1  as first element of the cycle , p has a first cycle which is Cp1  = (1 7 5 4) .

For i = 2 we have a second cycle :  Cp2  = ( 2 6 3 9 8)  , since p(2) = 6 , p²(2) = 3 , p³(2) = 9 , p⁴(2) 
= 8 ,  p⁵(2) = 2.

All elements of E are in  Cp1  or  Cp2 , thus p has two cycles that are :

Cp1  = (1 7 5 4) 
Cp2  = ( 2 6 3 9 8) 

What we have also to note is that a cycle of a permutation can be written with “exponents” as 
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below, since  (p  o  p )  can be written  p²  ,   (p  o  p  o   p ) can be written  p³  etc , so   : 

Cp1  is : p⁰(1)= 1  ,  p¹(1)= 7 ,  p²(1)  = 5 ,  p³(1)  = 4  ,   p⁴(1)  = 1 
Cp2  is:  p⁰(2)= 2  ,  p¹(2)= 6  ,  p²(2)  = 3  ,  p³(2)  = 9  ,  p⁴(2)  = 8  ,  p⁵(2)  =  2 

Cp1 and  Cp2  above are the two cycles of p written with exponents .

The length of a cycle is the number of  elements which are in the cycle (Cp1  is length 4 and Cp2  is 
length 5). For a cycle with exponents the length of the cycle is always the integer h ( such that pʰ( i) 
=  i )  . And for any integer n we have  pⁿ(i) =    pʳ  (i)  with r  = n mod h ,  which is obvious by 
definition of a cycle. For example in cycle Cp1 above  we can check that p⁶(1) = p²(1) , since  2 = 6 
mod 4 . 

The first element of a cycle , here denoted i ,  is written at the end of the cycle but also at the  
beginning of the cycle as we can see in the two cycles  Cp1  and  Cp2  above . At the end of the cycle 
we write  pʰ(i) = i , and at the beginning  p⁰(i) = i  , by convention (since h = 0modh) .  This is done 
to make more easy the function composition calculations which will be studied §5 below . 

The cycles of a permutation will most often be presented subsequently by cycles with exponents 
and written in columns in the following way : 

Cp1  =                                  Cp2 =
 p⁰(1)= 1                         p⁰(2)= 2
p¹(1) = 7                         p¹(2)= 6 
p²(1)  = 5                         p²(2)  = 3
 p³(1)  = 4                        p³(2)  = 9
 p⁴(1)  = 1                        p⁴(2)  = 8
                                        p⁵(2)  =  2

Supplements

A simple and quick and ‘’visual’’  method to build the cycles of a permutation is to write the 
permutation with the rank numbers above the elements of the sequence in form of a matrix:

                               1   2   3    4   5    6  7    8     9

           p = ( 7 6  9  1 4  3 5  2  8)

Then , we simply read , or watch ,  in the matrix:   below rank number (or column number) 1 is 7 , 
thus p(1) = 7 ; next watch what is below rank 7 :  below rank number 7 is 5  , thus p²(1) = 5 ; next 
watch what is below rank 5 :  below rank number 5 is 4  , thus p³(1) = 4  , next watch what is below 
rank number 4:  below rank number  4 is 1  , thus p⁴(1) = 1 and the first cycle is closed . In this way 
the cycles of the bijection (permutation) are built.
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Finally, it can  be noted that the first element of a given cycle can be any element of that cycle.  
Thus,   the cycle Cp2 =  ( 2 6 3 9 8 ) can for example be written (3 9 8 2 6 ) where the base element  
(the first element) is 3 and no longer 2 . This result is obvious.

Therefore,with exponents the following cycle :

Cp2 =
p⁰(2)= 2
p¹(2)= 6 
p²(2)  = 3
p³(2)  = 9
p⁴(2)  = 8
p (2)  =  2⁵

would be , with 3 as first element  :

p⁰(3) = 3
p¹(3) = 9 
p²(3)  = 8
p³(3)  = 2
p⁴(3)  = 6
p (3)  =  3⁵

One way of  representing  the  cycles  of  a  bijection  that  is  sometimes  useful  is  to  put  them in 
"arrowed" form. Indeed, we can write the two cycles   Cp1  and Cp2  above in this way:

Cp1  = 1→ 7 →5 →4 
Cp2  = 2 →6 →3 →9 →8,

This means intuitively, for example for Cp1 , that   p(1)= 7,  p(7) = 5 p(5) = 4, or equivalently with 
exponents of p that  p¹(1) = 7, p²(1)  = 5 , p³(1)  = 4 .

As a last point , we mention that in the following, for simplicity,  permutations of elements of a set 
will often be written as a sequence of symbols in parentheses such   ( 7 6  9  1 4  3 5  2  8)  for 
example , in place of the matrix notation :
                               1   2   3    4   5    6  7    8     9

           p = ( 7 6  9  1 4  3 5  2  8)

But in order not to confuse them with cycles that can be also written in this form of symbols in 
parentheses  we will write the name of the bijection ( that is, the letter by which the bijection is 
denoted) at the beginning of the sequence, as follows :  p = ( 7 6  9  1 4  3 5  2  8),while for cycles 
these will be written in general with the symbol C as follows:
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Cp1  = (1  7  5  4)

Cp2  =  (2  6  3  9)

But in the following the cycles of bijections will most often be written in the form of exponents of 
the bijection p.

§ 3 – Cyclic subgroups of permutations.

What is cyclic subgroup of symmetric groups ? 

Let E be a set of elements . Se  is the symmetric group of  E. A cyclic subgroup of Se , called G , 
generated by a permutation p belonging to Se, is the set of permutations (bijections) defined by :

{ p , p² , ... pʲ,...,pª } ,  such as   p¹  = p  , p² = p o p , p³ = p o p o p , etc . 

The integer denoted a is the Last Common Multiple (LCM) of the integers representing the lengths 
of the cycles of p. If cycles C1 , C2 , … , Ck of p have length h1 , h2 , ...hk  , then p generates a cyclic 
subgroup G of Se which is G =  { p , p² , ... pʲ,...,pª } , in which a = LCM  ( h1 , h2 , ...hk ).

(So, note that in the following we call the set   G   ''cyclic subgroup'' of S  e   whereas this   is   not entirely   
correct, since this term refers rather  to the algebraic structure (  G  ,   o   )   ). 

The  function  composition  operation  o   is  used  to  construct  the  subset  G of  E  from a  given 
permutation of E, it is also the internal composition law of the algebraic structure (G, o ).

Properties of the set   G  

In G we obviously have for each integer j and h :  pʲ o pʰ =  pʰ o   pʲ =  pʲ⁺ʰ. 

For example,  (p o  p) o (p o  p o p) =  p² o  p³ ,  and  (p o  p) o  (p o  p o  p) =  (p o  p o p o  p o p)  = p⁵. 
This is due to the characteristics of the function composition applied to the same function. This 
means that the structure (G, o) is a commutative group.

The integer a is also the smallest integer such as the function pª is identity bijection (i.e.  pª(i) = i , 
for each i ) .The integer  a is also the cardinality of G : a is the number of permutations that the set 
G contains.

This subgroup  G is cyclic modulo  a and commutative. It is cyclical modulo  a  in the sense that 
pª ⁺¹ = p¹ ,  pª ⁺² = p²  , ..etc . If x > a ,  then  pˣ = pʳ with  r = remainder (x/a) , what means  pˣ = 
pʳ  with  r =  x mod a .

To summarize, the cyclic subgroup {p¹,p².. …  pʲ,.... ,  pª} of the symmetric group  Se of a set E 
generated by a bijection (permutation) p belonging to Se is simply the set { p¹ = p , p² = p o  p , p³ = 
p o p o p ,.... , pʲ = p o p o......o p  ( the operation o applied j - 1 time)........ , pª = p o  p o …... o p (the 
operation o applied  a – 1 time ) } ,  with  a defined as above. More exactly  it  is the  algebraic 
structure  ( {p¹,p².. … pʲ,.... , pª} , o  )  where o is the operation of function composition. 
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The group defined by the algebraic structure (G ,  o) is commutative. Indeed, the symmetric group 
( Se , o ) for a finite set E is a group. G is a subset of Se. As we’ve seen above for two elements pʲ 
and pʰ belonging to G we have pʲ o  pʰ = pʰ o  pʲ, so the algebraic structure (G , o ) is a commutative 
group. Now we give some examples of cyclic subgroups of symmetric groups and at the same time 
examples of constructions of such structures.

These examples can make more clear what we have said about cyclic sub-groups of symmetric 
groups above.

Example 1

Let p be a permutation of the set E = {1,2,3,4,5,6,7 } ,  defined and written as follows (the order 
relation on E  is the natural order of integers )  : 

     1    2   3   4    5  6    7

p = (  3 7  5 2  6 1  4 )

p has two cycles (this can be checked) , which are :

Cp1 = (1 3 5 6 )  , length = 4
Cp2 = (2  7  4) , length = 3    

The base elements (first elements) of these two cycles are 1 and 2 . They correspond to columns 1 
and 2 of the table below which represents G .The LCM of the two integers representing the lengths 
of this two cycles is : LCM(4,3) = 12.Therefore ,  the cyclic subgroup G of Se , generated by p , is 
made up with twelve permutations of the set E as we can see below . If we represent G by an array 
it can be checked that  : 

G =

            1     2      3     4      5     6       7 
p   = ( 3  7   5   2   6   1   4  )
p²  = (5   4   6   7   1   3  2  ) = p o p = p²
p³  = (6   2   1   4   3   5   7 ) = p o  p o  p = p³ , etc,
p⁴  =  (1   7   3   2   5   6   4 )  
p⁵  =  (3   4   5   7   6   1   2 )
p⁶  =  (5   2   6   4   1   3   7 )
p⁷  =  (6   7   1   2   3   5   4 )
p⁸  =  (1   4   3   7   5   6   2 )
p⁹  =  (3   2   5   4   6   1   7 )
p¹⁰=  (5   7   6   2   1   3   4 )
p¹¹=  (6   4   1   7   3   5   2 )
p¹²=  (1   2   3   4   5   6   7 )

This table can be constructed very quickly by the so-called "visual" method described in §2 (see 
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